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ABSTRACT

In a previous paper, the PPN (Parametrized Post-Newtonian)

formalism was used to analyze relativistic influences on stel-

lar stability in nearly all metric theories of gravity. That

analysis omitted all "preferred-frame" terms. In this paper,

possible preferred-frame effects on stellar stability are

examined and no new instabilities are found. In particular,

we show that: (i) Although terms linear in the preferred-frame

velocity w (time-odd terms, analogous to viscosity and energy

generation) change the shapes of the normal modes, their sym-

metry properties prevent them from changing the characteristic

frequencies. Thus, no new vibrational or secular instabilities

can occur. (ii) Terms quadratic in w do not change either the

shapes of the normal modes or the characteristic frequencies

for radial pulsations. Thus, they have no influence on radial

stability. (iii) Terms quadratic in w do change both the nor-

mal modes and the characteristic frequencies of nonradial pul-

sations; but in the limit of a neutral mode these changes

vanish. Hence, there is no modification of the criterion for

convective stability, i.e., the standard Schwarzschild crite-

rion remains valid.
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I. INTRODUCTION AND SUMMARY

In a recent paper [Ni (1973); hereafter referred to as Paper I; equations

therein will be referred to simply as I (25), I (34), etc.], we used the PPN

(Parametrized Post-Newtonian) formalism of Will and Nordtvedt (1972) to analyze

stellar stability for spherically symmetric stars in a large class of metric

theories of gravity. We found that (i) for "conservative theories of gravity,"

current solar-system experiments guarantee the existence of a dynamical rela-

tivistic instability; (ii) for "nonconservative theories," current experiments

do not permit any firm conclusion about whether relativistic effects will

actually stabilize or destabilize stars; (iii) the standard Schwarzschild

criterion for convection is valid. The basic equations of Paper I were rigor-

ous within the PPN framework; but when analyzing and manipulating those basic

equations, we ignored all "preferred-frame terms" (all terms containing the

velocity w of the star relative to the mean rest frame of the universe). This

paper completes the analysis of Paper I by analyzing the effects of the

preferred-frame terms.

At the time of writing Paper I, we believed that the preferred-frame

terms would drive vibrational instabilities of spherically symmetric stars,

and that those instabilities, when combined with astronomical observations

on white-dwarf pulsations, might lead to experimental limits on the "preferred-

frame parameters" al' V 2' and 03. But as a result of the present analysis,

the above beliefs turn out to be incorrect. No new instabilities of any type

The experimental limits on Qe (= 7A1 + A2 - y - 4), 22 ( = A ' 2 - 1),

and oy (= ~p 1 - 27 - 2 - ) due to stability observations of white dwarfs,

as quoted in Ni (1972) must be dropped in view of the present analysis.

Although preferred-frame vibrational instabilities might still occur in

asymmetric stars, they would not likely give such tight limits on the a's.
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are produced by the preferred-frame terms. Hence, the stability conclusions

of Paper I are completely general within the PPN formalism.

II. ANALYSIS

In Paper I, by calculating in the PPN rest frame of the star, and by

describing the stellar pulsation by a Lagrangian displacement of the form

(x) e , we obtained the following linearized, adiabatic pulsation equa-

tions [eqs. I (32) rewritten in slightly different format]: 2

2The notations and conventions of this paper are the same as those in Paper

I unless otherwise specified. For definitions of the various quantities

undefined here, see Paper I also.

;q ( o + + 2 + iw + - 2 )  = o (1)
w Q

Here;' % 2, kiw and d 2 are linear operators that are all independent of
w 0

the frequency of pulsation S. In particular,

.j = [ + (37 - 1) U] Ap + (37 - 1) PAU 4- p [l 5 (3y - 1)U ]p
o P

+ pv(AU) + 2p[A vu + tV(AU) + V(a)] , (2)

( 1 +I w2py(AU) 1 w wwSPV(AU 7AU) 1 (3)
d 2t 3 ( 2  3 - 2 U) - a2  7- U , (3)

w

3In Paper I, there was an error in the AP/p term: i.e., [1 + -( 2 +

- ) w 2 + (37 - 1) U] should be corrected to [1 + (37 - 1) U], as has

been done above.
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iw 2= iL lp(AU - U) w - (l 20 w

+ O2p(w - Y) (AX- X) - Ol(w ) V ](

1 ) V (5)2~ = 0 + a2 1+ 1) p(V W) + (57 - 1) U, - (Q + ) V (5)

Also

A* = - p* div 1 (6)

Notice that the linear preferred-frame terms are embodied in the operator

,iw' and the quadratic preferred-frame terms are embodied 
in ;' 2 [Recall

w

(Paper I) that w is the velocity of the star relative to the mean-rest frame

of the universe.]

In Paper I, we derived stability criteria by analyzing the simplified

pulsation equation (;o + 0 2 ) = 0. Here we look into possible modifi-

cations of those criteria by the presence of diw and ? 2. Terms in ;iw have
w

imaginary coefficients; therefore they (like viscosity, energy generation,

and radiative transport) might possibly affect the vibrational 
and secular

stabilities of the star. Terms in ; 2 have real coefficients; therefore

w

they might possibly affect the dynamical and convective stability of 
the

star. But, in fact, no such effects occur. To see this, we proceed as

follows.

Equation (1), when supplemented by the boundary 
conditions and the

expressions for the various Lagrangian changes 
in terms of g, constitutes

a characteristic value problem for D. In Paper I we have shown that (i)

this characteristic value problem is self-adjoint if, and only if,

l- 2= 1 = 1 2 1 3 = 1 = 0 ; (7)



but (ii) in the general case with w-terms deleted, although the characteris-

tic value problem is not self-adjoint, a variational integral can still be

constructed.

When the w-terms are included, one can use the same argument as in

Paper I [the passage between I (43) and I (53)] to show the following:

Take the full post-Newtonian characteristic equation (1); dot / into it;

and integrate over the star. The result

2 x + iwd x +  ( 2) d3 x = 0 (8)

is a variational principle for the post-Newtonian normal modes.

The changes in squared frequency due to preferred-frame terms can be

obtained, to post-Newtonian accuracy, by inserting the Newtonian character-

istic functions into the variational principle (8) and solving for Q:

I " (0 2 + ~liw) td 3 x

)preferred frame .r pi23 dx ()

The change 5Q due to Piw is proportional to

f * •. d3x . (10)

Being linear in the constant vector w, iw raises and lowers the spherical-

harmonic index of a characteristic function by 1 -- thereby producing a new

function orthogonal to the original one. (For proof, please see the Appen-

dix.):

5n [ (o - mode)* iw (i - mode) d x

= (1 -mode) • a[ ( - 1) - mode] + b[ ( - 1) - model d3x = 0 .(11)



Thus, the iw term has no effect whatsoever on the pulsation frequencies of
1W

the star to post-Newtonian accuracy. Hence, to the same accuracy the stabi-

lity criteria are not affected either - and, in particular, there is no

post-Newtonian vibrational or secular instability.

Might the preferred-frame velocity w drive a vibrational or secular

instability at higher orders in the post-Newtonian expansion (post-post-

Newtonian, etc.)? There are two ways that it might do so: (i) by higher-

order corrections to the imaginary operator i.W, and (ii) by higher-order

effects of the original .iw (eq. [4]). Although one is not now in a position

to evaluate the first way,. it is clear that the second way cannot produce

an instability: Use higher-order perturbation:theory to solve equation (1)

to higher-order accuracy in .w. Since iw is purely imaginary and o,' ; 2'

2 are all real, every term in a perturbation series expansion for 
Im(Q)

must contain ~i. an odd number of times. [This can be proved by an actual
1w

expansion calculation despite the nonself-adjoint nature of the problem.]

But /iw only raises and lowers the spherical-harmonic index of a character-

istic function by 1, while w 2' o, and ; 2 only raise and lower the spherical-

w '

harmonic index by 2 or do not change it [for proof, see the Appendix]. Hence

every term must contain an integration of the form

S( - mode) (2' - mode) d x, ' (12)

where one of I and 2' is even while the other is odd. By orthogonality of

the different spherical-harmonic modes, (12) vanishes and

Im(o) = 0 . (13)

Therefore no higher-order vibrational or secular instabilities can 
occur.
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By equation (9), the change in squared frequency due to the rela-

tivistic ; 2 operator is

0w C 3 2 d3x (14)

The first term in equation (3) for v 2 1 can be combined with the term
w

6V(,U) in / I [eq. (2)] to give a renormalization of the gravitational

constant

S[1 + ( 2 + 2 2- ) w2] G

Since Newtonian stability is not sensitive to the value of the gravitational

constant, this term does not affect stability (even though it does affect

the values of nonzero pulsation frequencies). The second term in ;P 2
w

[eq. (3)] can be put into the form

- wY V(6U - 5U ) , (15)
2 2 Y 1r 3 Y6

where

(x - x' )( - x' ) (16)
U(x) = P(x') dx' , (16)

and

3U(x) = 6(x') 1 dx' (17)
S- x'

The symbol P denotes the Eulerian change in the quantity that it qualifies.

For radial pulsations

iU(x) 1 SU(x) ; (18)

therefore equation (15) vanishes and there are no changes either in the shape of the

normal modes or the characteristic frequencies. For nonradial pulsations,

although the normal modes and characteristic frequencies are modified in
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general [see the Appendix for an explicit expression for 602], at the onset

of convection

6p(x') = 0 , (19)

so bU75 = 5U = 0 and equation (15) vanishes. Hence by equation (14), neither

spherical stability nor the onset of convection are affected by z 2.
w

III. CONCLUSIONS

Preferred-frame terms have been shown to not affect stability criteria

for stellar pulsations about spherical equilibrium, even though they do

modify the characteristic functions and (in some cases) characteristic fre-

quencies. This enables us to conclude that the stability criteria found in

Paper I are completely general and can be used for all metric theories of

gravity which fit into the PPN formalism in their post-Newtonian limits.

I am much obliged to Dr. Kip S. Thorne for many helpful suggestions

and critical comments.
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APPENDIX

SOME DETAILS OF THE CALCULATION

In this appendix we will derive an explicit version of equation (9)

for 5 2, and will prove the statement ("S") that ;.w only raises and lowers

the spherical-harmonic index of a characteristic function by 1, while d 2'
w

o, and d 2 only raise and lower the spherical-harmonic index by 2 or do

not change it.

To accomplish this, we analyze the Lagrangian displacement 5 into

normal modes belonging to different vector spherical harmonics, i.e.,

r= Ym(,) (Al)
r

1 dX(r) Y£m (, o)

g= I(2 + 1) r dr , (A2)

and

1 dx(r) ~:Y m(0,4)

4 ± ( + 1) r sin O dr (A3)

(Qr y ¢ are physical components, not 
covariant components). For con-

venience, we choose our coordinate system such that the z-axis is in the

direction of the "preferred-frame" velocity, i.e., w = w" where z is the

unit vector along the z-axis.

Without the preferred-frame terms wiw and -2, the operator ;o 2
w

is invariant under rotation; hence the characteristic value problem has m-

degeneracy in this approximation. With the preferred-frame terms, the

degeneracy in m is broken; but since the problem still possesses azimuth

symmetry, normal modes have definite m-numbers. Therefore (Al)-(A7) are

normal modes for the characteristic problem to the first approximation, and
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can be used to evaluate the changes in characteristic frequencies due to

preferred-frame terms by equation (9).

To evaluate equation (9) and to find the effects of ~iw and 2j 2 on
w

normal modes, we first derive a number of formulas involving spherical

harmonics. From the integration formula involving three spherical her-

monics [cf. e.g., Edmonds (1960) p. 63]

1Y 1iml(,) Ym2(,() Y 33(22 ) dl

(21 + 1)(22 + 1)(23 + 1) 1/2 1 22 m3) (A4)

4 0 \m1  2  3

we have

J Y*I'm(Q') Y'Im(G,T) cos Q d0

= ( 1)m' (2' + 1)(21 + 1)]1/2 1 0 ) ( m , (A5)
0 0 0 m' m (A5)

and

Y 'm(' C6m(' C sin 9 d2

1o /(- 1)m'[2( - m)( + m + 1)(21' + 1)(21 + 1)] 1/2( 10 1( 2' M 1

where m m3 is the Wigner 3-j symbol. (0 0 0 is nonzero only if

2' = 2 + 1 or 2' = 2 - 1.

From the gradient formula [e.g., Edmonds (1960) p. 81],

7[(r) Ym(Q, C)O ~ - - r (r) -Y>,+lm(o, ,)

+ (22 +l ) +2 1 O(r) YU 1 mQ,) , (A7)



and from the definition of vector spherical harmonics, we derive

( + + l)( m + 1) 1/2 Y

*7 + ( m (r) Y (,1/2 ( + + )1/ Y AJlm(m + )( (2 + 1)(2 + 3) dr

(E + m)( - m) 1/2 (d r +
-(21 + 1)(21- 1dr r -lm '

and

^z *1 70(r) Y m)j * (t(r) Y m) do

(2 + m + 1)(1 - m + 1) [d I d
-2 + 1)(2 + 3) \dr [ dr J

( + m)(f - m) d i+ d ++ -r (A9)
+(21 + 1)(2[ - 1) r + r (A9)

From the formulas

3/r2 + r'2 - 2 rr' cos 7 r - r' cos 7 (A10)

r r + r 2  2rr' cos 7

and

1 l P (cos 7), (r < r') (All)
VI _ _ _ _ + 7),

S 2 2=0 r'
r + r '  - 2rr' cos 7

we find

r2 2 ro
r + r' 2 - 2rr' cos 7 = 2 2+1 - 1 , . P£(cos 7). (A12)

=01 r' r'

By the addition theorem, we can then write equation (A12) as

00 1 r+2

2=0 m=-2 r

1 1 r- Y  m ( ' ',4 ) Y ( G' ) . (A13)

Now by (Al)-(Al3) and by the expressions [cf. I (38), (39), (40)]
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U = - div[p(x') E(x')] dx' , 4)
S- x'

(x - x ')(x - x A)

U = - div[p(x') (x')] x  3- dx' , (AS)

5X = - div[p(x') (x')]jx - x' dx' , (A16)

and

b2( x) (A17)
U75 = 75U -

we can readily verify, by straightforward calculations, that

.iw( - mode) = a[ (2 - 1) - mode] + b[ (2 + 1) - mode] , (A18)

and

d 2(1 - mode) = c[ (2 - 2) - mode] + d[2 - mode] + e[ (2 + 2) - mode] . (A19)

w

Equations (A18) and (A19) together with the invariance of o and f 2 under

rotation prove the statement "S" made at the beginning of this appendix.

To derive an explicit formula for 112 [eq. (9)], we note that

I d d x = O

[by (Al8)]. Therefore the integral remaining to be evaluated is

S * . 2 5 d x.

w

By (Al)-(A17) and the formula [by (Al)-(A3)]

( ) 2 dp) -r yIm (, (A20)

we have, after some calculations and reductions,
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3 2 d(p ) d d(p) dX <
S * 1(x - - 1+1S 2w 22 + 1 dr' dr' dr dr r+ 1

2f+2

(£ +m + 1i)(2 - m + 1) d2  2 d 2(2 +2)) 1 r+2

(2 + 1)(2 + 3) \ r2 r dr - r2 + 3 r>£+1

2
1 <I (2 + m)(2 - m) d2  2 d

22 - r 1-1- (22 + 1)(2 -1) 2 r dr
r dr

+2 i
( - 1)( + 1 1 < 1 < (A21)Sdrdr' (A21)

22 + 3 2+1 21 -1 r-1
r r> r

In general (A21) does not vanish. But for 2 = 0, (A21) vanishes; and for

1f/ 0, at the onset of convection where, 5p = 0, i.e., where

d(p*) ~
dr =0 (A22)

(A21) also vanishes, in agreement with the results in §II.
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